Soil organic carbon in irrigated agricultural systems: a meta-analysis

Item

Title
Soil organic carbon in irrigated agricultural systems: a meta-analysis
Global Change Biology
Creator
David Emde et al.
Kirsten Hannam
Ilka Most
Louise Nelson
Melanie Jones
Subject
Irrigation
Practices
agriculture
aridity
climate
soil depth
soil organic carbon
soil texture
doi
https://doi.org/10.1111/gcb.15680
Abstract
Over the last 200 years, conversion of noncultivated land for agriculture has substantially reduced global soil organic carbon (SOC) stocks in upper soil layers. Nevertheless, practices such as no- or reduced tillage, application of organic soil amendments, and maintenance of continuous cover can increase SOC in agricultural fields. While these management practices have been well-studied, the effects on SOC of cropping systems that incorporate irrigation are poorly understood. Given the large, and expanding, agricultural landbase under irrigation across the globe, this is a critical knowledge gap for climate change mitigation. We undertook a systematic literature review and subsequent meta-analysis of data from studies that examined changes in SOC on irrigated agricultural sites through time. We investigated changes in SOC by climate (aridity), soil texture, and irrigation method with the following objectives: i) to examine the impact of irrigated agriculture on SOC storage, and ii) to identify the conditions under which irrigated agriculture is most likely to enhance SOC. Overall, irrigated agriculture increased SOC stocks by 5.9%, with little effect of study length (2 – 47 years). However, changes in SOC varied by climate and soil depth, with the greatest increase in SOC observed on irrigated semi-arid sites at the 0 - 10 cm depth (14.8%). Additionally, SOC increased in irrigated fine- and medium-textured soils but not coarse-textured soils. Furthermore, while there was no overall change to SOC in flood/furrow irrigated sites, SOC tended to increase in sprinkler irrigated sites, and decrease in drip irrigated sites, especially at depths below 10 cm. This work sheds light on the nuances of SOC change across irrigated agricultural systems, highlights the importance of studying SOC storage in deeper soils, and will help guide future research on the impacts of irrigated agriculture on SOC.
Rights
This article is protected by copyright. All rights reserved.